

반도체 회로 실습 강좌 (Cadence Full-Custom IC Designer 기초과정)

나인플러스아이티(주) 부설교육센터

반도체 회로 실습 강좌

[Cadence Full-Custom IC Designer 기초과정]

Cadence의 한국채널파트너(Cadence Channel Partner/CCP)인 나인플러스아이티(주)의 부설교육센터에서는 반도체설계 인력양성과 Fabless의 설계 연구원들을 위한 실무능력향상을 위하여 Cadence의 Virtuoso Schematic, Layout, Spectre와 Assura(LVS & DRC)를 사용하여 Full-Custom IC 설계의 전 과정을 습득할 수 있는 기초과정을 실시합니다.

- ① Custom IC 설계의 전 과정을 Cadence 반도체설계 Software로 실습
- ② 산업체 재직자 및 대학생, 대학원생의 실무능력 향상 교육과정
- ③ 다양한 종류의 소자 및 회로 실습을 통한 전공 자신감 및 핵심 능력 향상
- 1. 교육 대상 및 기간, 장소
 - 가. 교육 대상: 반도체에 관심있는 산업체 재직자 및 대학생, 대학원생, 졸업생, 취업준비생
 - 나. 교육 기간: 2023년 2월 6일(월) ~ 2월 11일(토) 교육 시간: 월~금요일 18:30 ~ 21:30, 토요일 13:00 ~ 18:00(총 20시간)
 - 다. 교육 장소: 부산대학교 제6공학관 6308호 실습실

2. 교육 인원 및 교육수강료

- 가. 교육 인원: 20명 이내
- 나. 교육수강료: 학생 25만원(취업준비생 포함)/산업체 재직자 50만원
- 3. 교육생모집
 - 가. 교육생모집: 나인플러스아이티(주) 홈페이지 안내 및 수강 신청 www.openhardware.co.kr
 - 나. 교육 신청 마감 일자: 2023년 1월 31일 선착순 마감

4. 교육평가 및 수료

가. 교육평가

교육성적은 출석 및 퀴즈 (퀴즈는 마지막 날에 진행)

나. 수료증 수여

출석 80% 이상을 확보하여야 수료로 인정하며, 수료 증명서를 수여함.

5. 교육 수강 신청 문의

- 가. 수강 신청 및 취소 방법
 - 1) 수강 신청 방법: www.openhardware.co.kr 교육과정 신청
 - 2) 강의 시작 전 취소 가능함 (강의 진행 후 교육청 규정에 따름)
- 나. 문의: T. 051-758-4841

6. 교육개요 및 세부 일정

- □ 교육 목표
 - ① Cadence Tool을 이용하여 CMOS 집적회로를 설계
 - ② 우수 전문 인력 양성을 통한 반도체 설계 기업의 실무인력양성
 - ③ CMOS Device/Manufacturing technology/CMOS Inverter 설계와 Layout 설계 전문가 양성
 - ④ 산업체 실무능력을 기반으로 한 대학 실무인증 교육 방법과 현장 적응 능력 향상을 도모함
- □ 교육 기간 주요 사용 소프트웨어
 - ① 실무 실습 교육 주요 소프트웨어
 - -Cadence Virtuoso Schematic Editor/Layout Editor
 - -Cadence Virtuoso Spectre/ADE
 - -Assura(LVS & DRC)/G-PDK

□ 교육내용

일정	내용	시 간	비고
1일차	 반도체 소자 반도체 최신 동향 MOSFET 기본 동작 원리 및 특성 CMOS 논리회로 반도체 공정 CMOS 8대 공정 GPDK 180 Design Rule의 이해와 적용 	3	반도체 소자 및 공정 이론 & CMOS 논리회로
2일차	 Cadence에서 자주 사용하는 UNIX Command 교육 - Unix 기본 명령어 실습 - 파일 사용 권한 관리 및 검색 명령 실습 - 프로세스 관리나 파일 백업 압축 명령 실습 • Full Custom IC Design을 위한 Cadence Schematic Editor 환경설정 및 사용 방법 실습 	3	Schematic & Digital Logic Gate and Digital Circuit Simulation
3일차	 Cadence Spectre Simulator 환경설정 및 사용 방법 GPDK180을 적용한 CMOS Inverter, CMOS Inverter를 응용한 Ring Oscillator, 디지털 논리 게이트 (NAND, NOR 등) 및 디지털 논리 회로 (FlipFlop, MUX 등) 설계 새로운 프로젝트 생성 및 계층도면의 이해 Inverter 회로 설계 작성, Simulation option의 설정, Transient 해석/ Bias Point 해석, DC 해석/ AC 해석, 전압원 및 전류원 사용법, Probe window 사용법 	3	Schematic & Digital Circuit and Analog Circuit Simulation
4일차	 Cadence Spectre Simulator 환경설정 및 사용방법 - GPDK180을 적용한 CMOS Inverter, 디지털 논리 게이트 (NAND, NOR 등), 디지털 논리회로 (FlipFlop, MUX 등) 및 아날로그 회로(차동증폭기) 설계 - 설계한 회로의 Simulation을 통한 결과 검증 	3	Schematic & Digital Circuit and Analog Circuit Simulation
5일차	 Virtuoso Layout Editor 설정 및 실습 1 CMOS Inverter Layout & Assura DRC / LVS 검증 Virtuoso Layout Editor 설정 및 실습 2 디지털 논리게이트 및 디지털 논리회로 layout 실습 및 Assura DRC / LVS 검증 	3	Layout Editor & Assura DRC and LVS
6일차	 Virtuoso Layout Editor 설정 및 실습 2 디지털 논리게이트 및 디지털 논리회로 layout 실습 및 Assura DRC / LVS 검증 Virtuoso Layout Editor 설정 및 실습 3 Analog Circuit (차동 증폭기) Layout & Assura DRC / LVS 검증 	5	Layout Editor & Assura DRC and LVS & Quiz

* 교육내용과 일정은 일부 변경될 수 있습니다.